

Abstracts

High-Frequency Time-Domain Modeling of GaAs FETs Using Hydrodynamic Model Coupled with Maxwell's Equations

M.A. Alsunaidi and S.M. El-Ghazaly. "High-Frequency Time-Domain Modeling of GaAs FETs Using Hydrodynamic Model Coupled with Maxwell's Equations." 1994 MTT-S International Microwave Symposium Digest 94.1 (1994 Vol. 1 [MWSYM]): 397-400.

A high frequency full wave model for microwave and millimeter wave GaAs Field Effect Transistors (FET) is presented. The model consists of two coupled models for the solid-state and electromagnetic parts of the problem. In the solid-state part, a hydrodynamic model consisting of the conservation equations for carrier density, energy, and momentum is utilized, All the conservation equations are solved with minimum simplifications. On the electromagnetic side, a 3D model consisting of Maxwell's equations is used. The time domain simulation of the device is performed using finite difference method. Numerical results of the presented model for a 0.5 μm MESFET show that wave effect plays a crucial role in modulating fields and electron velocities inside the active device. The wave propagation is detected and found to cause considerable variations in field distribution and electron velocities.

[Return to main document.](#)